Intrusion Detection Systems are widely used to detect cyberattacks, especially on protocols vulnerable to hacking attacks such as SOME/IP. In this paper, we present a deep learning-based sequential model for offline intrusion detection on SOME/IP application layer protocol. To assess our intrusion detection system, we have generated and labeled a dataset with several classes representing realistic intrusions, and a normal class - a significant contribution due to the absence of such publicly available datasets. Furthermore, we also propose a recurrent neural network (RNN), as an instance of deep learning-based sequential model, that we apply to our generated dataset. The numerical results show that RNN excel at predicting in-vehicle intrusions, with F1 Scores and AUC values greater than 0.8 depending on each intrusion type.
翻译:入侵探测系统被广泛用来探测网络攻击,特别是一些容易被黑客攻击的规程,例如:OCH/IP。在本文中,我们展示了在OCH/IP应用层规程上进行离线入侵探测的深层次学习顺序模型。为了评估我们的入侵探测系统,我们制作了一组数据集,并贴上了标签,其中有几个类别代表了现实入侵,一个正常类别——由于缺少这种公开的数据集,这是一个重大贡献。此外,我们还提议建立一个经常性神经网络,作为深层次学习的相继模型,用于我们生成的数据集。数字结果显示,RNN在预测车辆入侵方面非常出色,F1分数和ACU值超过0.8,视入侵类型而定。