Intraclass correlation in bilateral data has been investigated in recent decades with various statistical methods. In practice, stratifying bilateral data by some control variables will provide more sophisticated statistical results to satisfy different research proposed in random clinical trials. In this article, we propose three test statistics (likelihood ratio test, score test, and Wald-type test statistics) to evaluate the homogeneity of proportion ratios for stratified bilateral correlated data under an equal correlation assumption. Monte Carlo simulations of Type I error and power are performed, and the score test yields a robust outcome based on empirical Type I error and power. Lastly, a real data example is conducted to illustrate the proposed three tests.


翻译:在过去的几十年中,随机临床试验中双边数据的班级内相关性已经得到了各种统计方法的研究。实践中,将双边数据通过某些控制变量进行分层会提供更复杂的统计结果,以满足不同的研究目的。在本文中,我们提出了三种检验统计量(似然比检验,得分检验和Wald-type检验统计量),以在相等相关性假设下评估分层双边相关数据的比例比的均匀性。进行了Monte Carlo模拟以检验类型I误差和功率,并且根据实际类型I误差和功率,得分检验产生了稳健的结果。最后,进行了一个真实数据例子来说明所提出的三个测试。

0
下载
关闭预览

相关内容

【2023新书】随机模型基础,815页pdf
专知会员服务
99+阅读 · 2023年5月10日
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员