We introduce a class of Monte Carlo estimators for product-form target distributions that aim to overcome the rapid growth of variance with dimension often observed for standard estimators. We identify them with a class of generalized U-Statistics, and thus establish their unbiasedness, consistency, and asymptotic normality. Moreover, we show that they achieve lower variances than their conventional counterparts given the same number of samples drawn from the target, investigate the gap in variance via several examples, and identify the situations in which the difference is most, and least, pronounced. We further study the estimators' computational cost and delineate the settings in which they are most efficient. We illustrate their utility beyond the setting of product-form distributions by detailing two simple extensions (one to targets that are mixtures of product-form distributions and another to targets that are absolutely continuous with respect to product-form distributions) and conclude by discussing further possible uses.


翻译:我们为产品形式目标分布引入了一组蒙特卡洛估计值,旨在克服与标准估计值经常观察到的维度差异的迅速增长。我们将其与某类美国通用统计确定为一类,从而确立其公正性、一致性和无症状的正常性。此外,我们还表明,由于目标样本数量相同,它们的差异低于常规对应方,从目标中提取的样本数量相同,我们通过几个例子调查差异差异,并查明差异最明显和最不明显的情况。我们进一步研究估计值的计算成本,并划定其效率最高的环境。我们通过详细说明两个简单的扩展(一个是产品形式分布的混合目标,另一个是产品形式分布的绝对连续目标)和通过讨论进一步可能的用途来得出结论,来说明它们超越产品形式分布设置的效用。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【2020新书】Google软件工程方法论,617页pdf
专知会员服务
80+阅读 · 2020年11月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年6月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
2nd-order Updates with 1st-order Complexity
Arxiv
0+阅读 · 2021年5月27日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【2020新书】Google软件工程方法论,617页pdf
专知会员服务
80+阅读 · 2020年11月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员