Cosmological simulations of galaxy formation are limited by finite computational resources. We draw from the ongoing rapid advances in Artificial Intelligence (specifically Deep Learning) to address this problem. Neural networks have been developed to learn from high-resolution (HR) image data, and then make accurate super-resolution (SR) versions of different low-resolution (LR) images. We apply such techniques to LR cosmological N-body simulations, generating SR versions. Specifically, we are able to enhance the simulation resolution by generating 512 times more particles and predicting their displacements from the initial positions. Therefore our results can be viewed as new simulation realizations themselves rather than projections, e.g., to their density fields. Furthermore, the generation process is stochastic, enabling us to sample the small-scale modes conditioning on the large-scale environment. Our model learns from only 16 pairs of small-volume LR-HR simulations, and is then able to generate SR simulations that successfully reproduce the HR matter power spectrum to percent level up to $16\,h^{-1}\mathrm{Mpc}$, and the HR halo mass function to within $10 \%$ down to $10^{11} \, M_\odot$. We successfully deploy the model in a box 1000 times larger than the training simulation box, showing that high-resolution mock surveys can be generated rapidly. We conclude that AI assistance has the potential to revolutionize modeling of small-scale galaxy formation physics in large cosmological volumes.


翻译:银河系形成的宇宙模拟受到有限的计算资源的限制。 我们从人工智能( 具体是深学习) 的快速进步中提取到这个问题。 神经网络已经开发出来, 以便从高分辨率图像数据中学习, 然后对各种低分辨率图像进行精确的超分辨率(SR)版本。 我们将这些技术应用到LR宇宙性N体模拟, 生成SR版本。 具体地说, 我们能够通过生成512倍以上的粒子并预测其从初始位置的迁移来增强模拟分辨率。 因此, 我们的结果可以被看作是新的模拟成就, 而不是预测, 比如说, 到它们的密度字段。 此外, 生成过程是随机的, 使我们能够对大型环境中的小型模式进行抽样。 我们的模型只从16对小容量的LR- 体模拟中学习, 产生SR的模拟。 具体地说, 然后我们能够生成能够将 HR 物质能量谱复制到 16\, h ⁇ -1- mathrem {Mc} 的模型本身是新的模拟成就, 而HR == 10 mbreal 的模型在10 massreax mal 模拟中可以成功的模型到10 mex 的模拟的模拟到10 mal 的模型, 我们的模拟到10 mal_ brealde max 10 mal_ mabreal_ mabreal_ max max max max lade max max max 10 mal maxxxx maxxxxxxxxxxxxxxxxxxxxxx 。

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
Python图像处理,366页pdf,Image Operators Image Processing in Python
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员