Nowadays, recommender systems and search engines play an integral role in fashion e-commerce. Still, many challenges lie ahead, and this study tries to tackle some. This article first suggests a content-based fashion recommender system that uses a parallel neural network to take a single fashion item shop image as input and make in-shop recommendations by listing similar items available in the store. Next, the same structure is enhanced to personalize the results based on user preferences. This work then introduces a background augmentation technique that makes the system more robust to out-of-domain queries, enabling it to make street-to-shop recommendations using only a training set of catalog shop images. Moreover, the last contribution of this paper is a new evaluation metric for recommendation tasks called objective-guided human score. This method is an entirely customizable framework that produces interpretable, comparable scores from subjective evaluations of human scorers.
翻译:目前,推荐人系统和搜索引擎在电子商务时尚中发挥着不可或缺的作用。 但是,前面还有许多挑战,本研究试图解决其中的一些问题。 文章首先建议采用基于内容的时尚建议系统,使用一个平行的神经网络,将单一时尚项目商店图像作为投入,并通过在商店中列出类似项目来提出在商店中的建议。 其次,同一结构得到了加强,使基于用户偏好的结果个性化。 这项工作随后引入了一种背景增强技术,使系统对外部查询更加强大,使其能够仅使用一套目录店图像的培训,提出街头到商店的建议。 此外,本文的最后一项贡献是对被称为客观引导人类得分的建议任务的一种新的评价指标。 这种方法是一个完全可定制的框架,可以从人类得分的主观评价中产生可解释的可比分数。