Traditional route planning and $k$ nearest neighbors queries only consider distance or travel time and ignore road safety altogether. However, many travellers prefer to avoid risky or unpleasant road conditions such as roads with high crime rates (e.g., robberies, kidnapping, riots etc.) and bumpy roads. To facilitate safe travel, we introduce a novel query for road networks called the $k$ safest nearby neighbors ($k$SNN) query. Given a query location $v_l$, a distance constraint $d_c$ and a point of interest $p_i$, we define the safest path from $v_l$ to $p_i$ as the path with the highest path safety score among all the paths from $v_l$ to $p_i$ with length less than $d_c$. The path safety score is computed considering the road safety of each road segment on the path. Given a query location $v_l$, a distance constraint $d_c$ and a set of POIs $P$, a $k$SNN query returns $k$ POIs with the $k$ highest path safety scores in $P$ along with their respective safest paths from the query location. We develop two novel indexing structures called $Ct$-tree and a safety score based Voronoi diagram (SNVD). We propose two efficient query processing algorithms each exploiting one of the proposed indexes to effectively refine the search space using the properties of the index. Our extensive experimental study on real datasets demonstrates that our solution is on average an order of magnitude faster than the baselines.


翻译:传统的路线规划和近邻询问只考虑距离或旅行时间,而忽略了道路安全。然而,许多旅行者倾向于避免风险或不愉快的道路条件,如犯罪率高的道路(如抢劫、绑架、暴乱等)和崎岖的道路。为了便利安全旅行,我们为道路网络引入了一个新的查询,称为“最安全附近邻居K$”(k$SNNN)查询”。鉴于一个查询地点是v_l$,一个距离限制$d_c$和利息点$p_i,我们定义了最安全路径,从1美元到1美元,作为所有道路中安全率最高的道路评分从1美元到1美元,为1美元,为1美元,为1美元,为美元,为美元,为美元,为美元,为美元,为1美元,为道路评分,为1美元,为美元,为公路网路,为1美元,为美元,为1美元,为1美元,为1美元,为1美元,为1美元,为1美元,为SNNC,为最安全路径,为美元,以美元,为美元,为最高路径评分,所有路径评分,为1美元,为1美元,为1美元,为1美元,为美元,以我们的安全评分,为1美元,以我们的安全评分,为1美元,为1美元,根据我们的安全评算为1美元,我们的安全度。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Keras实例:PointNet点云分类
专知
6+阅读 · 2020年5月30日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Keras实例:PointNet点云分类
专知
6+阅读 · 2020年5月30日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员