The decomposition into interaction subspaces is a hierarchical decomposition of the spaces of cylindrical functions of a finite product space, also called factor spaces. It is an important construction in graphical models and a standard way to prove the Hammersley-Clifford theorem that relates Markov fields to Gibbs fields and plays a central role in Kellerer's result for the linearized marginal problem. We define an intersection of sum property, or simply intersection property, and show that it characterizes collections of vector subspaces over a poset that can be hierarchically decomposed into direct sums, giving therefore a general setting for such construction to hold. We will call this generalization the interaction decomposition. The intersection property is the Bayesian intersection property when specified to factor spaces which, under this new perspective on the interaction decomposition, appears to be a structure property. An application is the extension of the decomposition into interaction subspaces for any product of any set.
翻译:分解成互动子空间是一定产品空间的圆柱体函数空间的分层分解, 也称为要素空间。 这是在图形模型中的重要构造, 以及证明Hammersley- Cliford 理论标准方法, 将Markov 字段与 Gibbs 字段联系起来, 并在 Keller 的结果中对于线性边际问题起着核心作用 。 我们定义了一个总属性的交叉点, 或者简单交叉属性, 并显示它将矢量子空间的集合定性为可按等级分解成直接金额的相位, 从而给这种构造设置一个总体设置 。 我们称这种交互分解作用为一般化。 当指定到根据交互分解的这一新视角, 这些空间为结构属性时, 交叉属性为Bayesian 交叉属性 。 应用程序是将分解在任何一组产品的互动子空间中的分解延伸。