We revisit the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $. A multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}^n $ such that any point in $ \mathbb{R}^n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. We study the multiple packing problem for both bounded point sets whose points have norm at most $\sqrt{nP}$ for some constant $P>0$ and unbounded point sets whose points are allowed to be anywhere in $ \mathbb{R}^n $. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive various bounds on the largest possible density of a multiple packing in both bounded and unbounded settings. A related notion called average-radius multiple packing is also studied. Some of our lower bounds exactly pin down the asymptotics of certain ensembles of average-radius list-decodable codes, e.g., (expurgated) Gaussian codes and (expurgated) Poisson Point Processes. To this end, we apply tools from high-dimensional geometry and large deviation theory. Some of our lower bounds on the optimal multiple packing density are the best known lower bounds. These bounds are obtained via a proxy known as error exponent. The latter quantity is the best exponent of the probability of list-decoding error when the code is corrupted by a Gaussian noise. We establish a curious inequality which relates the error exponent, a quantity of average-case nature, to the list-decoding radius, a quantity of worst-case nature. We derive various bounds on the error exponent in both bounded and unbounded settings which are of independent interest beyond multiple packing.


翻译:我们在 Euclidea 空间重新审视高维多重包装问题。 多重包装是球体包装的自然一般化, 定义如下。 我们研究两个受约束点组的多个包装问题, 其点在最大值为 $\ mathcal{C} 美元, 其点在$\ mathbb{ R ⁇ n 美元中, 任何点在 $\ mathb{R ⁇ n 美元中位于半径 $ L-1 美元球的交叉点中, 以直径为单位, 直径为美元 Exathal{ C} 美元。 多重包装是多个受约束点组的常规值, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
51+阅读 · 2020年12月14日
[CVPR 2020]BEDSR-Net:单张文档图像的阴影去除深度网络
专知会员服务
26+阅读 · 2020年9月29日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月12日
Arxiv
0+阅读 · 2021年9月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员