We revisit the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $. A multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}^n $ such that any point in $ \mathbb{R}^n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. We study the multiple packing problem for both bounded point sets whose points have norm at most $\sqrt{nP}$ for some constant $P>0$ and unbounded point sets whose points are allowed to be anywhere in $ \mathbb{R}^n $. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive various bounds on the largest possible density of a multiple packing in both bounded and unbounded settings. A related notion called average-radius multiple packing is also studied. Some of our lower bounds exactly pin down the asymptotics of certain ensembles of average-radius list-decodable codes, e.g., (expurgated) Gaussian codes and (expurgated) Poisson Point Processes. To this end, we apply tools from high-dimensional geometry and large deviation theory. Some of our lower bounds on the optimal multiple packing density are the best known lower bounds. These bounds are obtained via a proxy known as error exponent. The latter quantity is the best exponent of the probability of list-decoding error when the code is corrupted by a Gaussian noise. We establish a curious inequality which relates the error exponent, a quantity of average-case nature, to the list-decoding radius, a quantity of worst-case nature. We derive various bounds on the error exponent in both bounded and unbounded settings which are of independent interest beyond multiple packing.
翻译:我们在 Euclidea 空间重新审视高维多重包装问题。 多重包装是球体包装的自然一般化, 定义如下。 我们研究两个受约束点组的多个包装问题, 其点在最大值为 $\ mathcal{C} 美元, 其点在$\ mathbb{ R ⁇ n 美元中, 任何点在 $\ mathb{R ⁇ n 美元中位于半径 $ L-1 美元球的交叉点中, 以直径为单位, 直径为美元 Exathal{ C} 美元。 多重包装是多个受约束点组的常规值, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元