We present a barrier method for treating frictional contact on interfaces embedded in finite elements. The barrier treatment has several attractive features, including: (i) it does not introduce any additional degrees of freedom or iterative steps, (ii) it is free of inter-penetration, (iii) it avoids an ill-conditioned matrix system, and (iv) it allows one to control the solution accuracy directly. We derive the contact pressure from a smooth barrier energy function that is designed to satisfy the non-penetration constraint. Likewise, we make use of a smoothed friction law in which the stick-slip transition is described by a continuous function of the slip displacement. We discretize the formulation using the extended finite element method to embed interfaces inside elements, and devise an averaged surface integration scheme that effectively provides stable solutions without traction oscillations. Subsequently, we develop a way to tailor the parameters of the barrier method to embedded interfaces, such that the method can be used without parameter tuning. We verify and investigate the proposed method through numerical examples with various levels of complexity. The numerical results demonstrate that the proposed method is remarkably robust for challenging frictional contact problems, while requiring low cost comparable to that of the penalty method.
翻译:屏障处理具有若干有吸引力的特征,包括:(一) 它没有引入任何额外的自由度或迭代步骤;(二) 它没有穿透, (三) 它避免了一个条件不完善的矩阵系统, (四) 它允许一个人直接控制溶液的准确性; 我们从一个平稳的屏障能源功能中获取接触压力,这个功能旨在满足非穿透限制。 同样, 我们使用一种平滑的摩擦法,通过滑动流的连续功能来描述粘贴滑的过渡。 我们用扩展的限定元素法将配方分离开来将界面嵌入元素内, 设计一个平均的表面整合计划, 有效地提供稳定的解决方案, 没有斜形振荡。 随后, 我们开发一种方法, 将屏障方法参数与嵌入的界面相匹配, 这样的方法可以不用参数校正。 我们用各种复杂程度的数字示例来核查和调查拟议的方法。 数字结果表明, 拟议的方法对于挑战摩擦接触问题来说非常可靠, 需要低成本的方法。