The Wiener-Hopf equations are a Toeplitz system of linear equations that have several applications in time series. These include the update and prediction step of the stationary Kalman filter equations and the prediction of bivariate time series. The Wiener-Hopf technique is the classical tool for solving the equations, and is based on a comparison of coefficients in a Fourier series expansion. The purpose of this note is to revisit the (discrete) Wiener-Hopf equations and obtain an alternative expression for the solution that is more in the spirit of time series analysis. Specifically, we propose a solution to the Wiener-Hopf equations that combines linear prediction with deconvolution. The solution of the Wiener-Hopf equations requires one to obtain the spectral factorization of the underlying spectral density function. For general spectral density functions this is infeasible. Therefore, it is usually assumed that the spectral density is rational, which allows one to obtain a computationally tractable solution. This leads to an approximation error when the underlying spectral density is not a rational function. We use the proposed solution together with Baxter's inequality to derive an error bound for the rational spectral density approximation.
翻译:Wiener-Hopf 方程式是Teplitz 的线性方程式系统,在时间序列中有几个应用。 其中包括固定的 Kalman 过滤方程式的更新和预测步骤以及双变时间序列的预测。 Wiener- Hopf 技术是解决方程式的经典工具,它基于对Fourier序列扩展中系数的比较。 本说明的目的是重新审视( discrete) Wiener- Hopf 方程式, 并获取一种更符合时间序列分析精神的解决方案的替代表达式。 具体地说, 我们提出了将线性预测与分变相结合的维纳- Hopf 方程式的解决方案。 Wiener- Hopf 方程式的解决方案需要一种工具来获得光谱密度函数的光谱化。 对于一般光谱密度函数来说,这是不可行的。 因此, 通常假设光谱密度是合理的, 使得一个人能够获得一种更符合计算性可拉动的解决方案。 当基本光谱度密度与理性的光谱系密度不具有理性的深度值时, 我们使用一种理性的光谱光谱光谱度模型来得出一个分辨率的分辨率的分辨率的分辨率。