In this paper, we present a novel method for using Riemannian Motion Policies on volumetric maps, shown in the example of obstacle avoidance for Micro Aerial Vehicles (MAVs). While sampling or optimization-based planners are widely used for obstacle avoidance with volumetric maps, they are computationally expensive and often have inflexible monolithic architectures. Riemannian Motion Policies are a modular, parallelizable, and efficient navigation paradigm but are challenging to use with the widely used voxel-based environment representations. We propose using GPU raycasting and a large number of concurrent policies to provide direct obstacle avoidance using Riemannian Motion Policies in voxelized maps without the need for smoothing or pre-processing of the map. Additionally, we present how the same method can directly plan on LiDAR scans without the need for an intermediate map. We show how this reactive approach compares favorably to traditional planning methods and is able to plan using thousands of rays at kilohertz rates. We demonstrate the planner successfully on a real MAV for static and dynamic obstacles. The presented planner is made available as an open-source software package.
翻译:在本文中,我们介绍了在体积图上使用里曼尼运动政策的新颖方法,这体现在避免微航空车辆障碍的例子中。虽然抽样或优化规划者在用体积图中广泛用于避免障碍,但在计算上费用很高,而且往往有不灵活的单片结构。里曼尼运动政策是一个模块、可平行和高效的导航模式,但与广泛使用的以 voxel 为基础的环境表现方式相比却具有挑战性。我们提议使用GPU 射线和大量同时政策,在蒸气化地图中采用里曼尼运动政策,直接避免障碍,而无需平滑或预处理地图。此外,我们介绍同样的方法如何直接规划LiDAR扫描,而不需要中间地图。我们展示了这种反应方法如何优于传统的规划方法,并能够以千赫兹速率使用数千个射线进行规划。我们用真实的MAV仪成功地展示了静态和动态障碍。我们介绍的规划器是作为开放的软件包件。