We present a generic evidential grid mapping pipeline designed for imaging sensors such as LiDARs and cameras. Our grid-based evidential model contains semantic estimates for cell occupancy and ground separately. We specify the estimation steps for input data represented by point sets, but mainly focus on input data represented by images such as disparity maps or LiDAR range images. Instead of relying on an external ground segmentation only, we deduce occupancy evidence by analyzing the surface orientation around measurements. We conduct experiments and evaluate the presented method using LiDAR and stereo camera data recorded in real traffic scenarios. Our method estimates cell occupancy robustly and with a high level of detail while maximizing efficiency and minimizing the dependency to external processing modules.
翻译:我们为LiDARs和相机等成像传感器提供了通用的证据网制图管道。我们的基于网格的证据模型分别载有细胞占用和地面的语义估计。我们用点数表示输入数据的估计步骤,但主要侧重于差异图或LiDAR范围图像等图像所代表的输入数据。我们不只依靠外部地面分割,而是通过分析测量周围的表面方向来推断占用证据。我们用LiDAR和在实际交通情况中记录的立体摄像机数据进行实验和评价所提出的方法。我们的方法对细胞占用进行有力和高度详细的估计,同时最大限度地提高效率和尽量减少对外部处理模块的依赖。