This paper explores three simple data manipulation techniques (synthesis, augmentation, curriculum) for improving abstractive summarization models without the need for any additional data. We introduce a method of data synthesis with paraphrasing, a data augmentation technique with sample mixing, and curriculum learning with two new difficulty metrics based on specificity and abstractiveness. We conduct experiments to show that these three techniques can help improve abstractive summarization across two summarization models and two different small datasets. Furthermore, we show that these techniques can improve performance when applied in isolation and when combined.


翻译:本文探讨了三种简单的数据处理技术(合成、增强、课程),用于改进抽象汇总模型,而不需要任何补充数据。我们采用了一种数据合成方法,与参数合成、数据增强技术与样本混合,以及课程学习,采用基于具体性和抽象性的两个新的困难度量标准。我们进行实验,以表明这三种技术可以帮助改进两个汇总模型和两个不同的小数据集的抽象汇总。此外,我们证明这些技术在孤立和合并应用时可以提高性能。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ICLR 2020 高质量强化学习论文汇总
极市平台
12+阅读 · 2019年11月11日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月5日
A Survey on Data Augmentation for Text Classification
Arxiv
38+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
5+阅读 · 2019年8月22日
VIP会员
相关资讯
ICLR 2020 高质量强化学习论文汇总
极市平台
12+阅读 · 2019年11月11日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员