StyleGAN generates photorealistic portrait images of faces with eyes, teeth, hair and context (neck, shoulders, background), but lacks a rig-like control over semantic face parameters that are interpretable in 3D, such as face pose, expressions, and scene illumination. Three-dimensional morphable face models (3DMMs) on the other hand offer control over the semantic parameters, but lack photorealism when rendered and only model the face interior, not other parts of a portrait image (hair, mouth interior, background). We present the first method to provide a face rig-like control over a pretrained and fixed StyleGAN via a 3DMM. A new rigging network, RigNet is trained between the 3DMM's semantic parameters and StyleGAN's input. The network is trained in a self-supervised manner, without the need for manual annotations. At test time, our method generates portrait images with the photorealism of StyleGAN and provides explicit control over the 3D semantic parameters of the face.


翻译:StyleGAN 生成有眼睛、牙齿、头发和背景面部( 颈部、 肩膀、 背景) 照片真实化的图像,但缺乏对3D 中可解释的语义表情参数( 如面容、 表达式和场景光化) 的像样控制。 另一面的三维可变形面型模型( 3DM ) 提供了对语义参数( 3DM ) 的控制, 但是在制作时缺乏光真化, 仅模拟面部内部, 而不是肖像的其他部分( 头发、 嘴内部、 背景) 。 我们展示了第一个方法, 通过 3DMM 来提供对一个预先培训和固定的 StyleGAN 进行像像面部位控制的方法。 一个新的操控网络, RigNet 在 3DM MM 的语义参数和 StyGAN 输入器之间接受培训。 网络以自我监督的方式培训, 不需要手动说明。 在测试时, 我们的方法生成像像像像像像像像像像一样的图像,, 并且对面的3D 语义参数提供明确的控制 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Co-Training for Semi-Supervised Image Segmentation
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员