Holistic scene understanding is pivotal for the performance of autonomous machines. In this paper we propose a new end-to-end model for performing semantic segmentation and depth completion jointly. The vast majority of recent approaches have developed semantic segmentation and depth completion as independent tasks. Our approach relies on RGB and sparse depth as inputs to our model and produces a dense depth map and the corresponding semantic segmentation image. It consists of a feature extractor, a depth completion branch, a semantic segmentation branch and a joint branch which further processes semantic and depth information altogether. The experiments done on Virtual KITTI 2 dataset, demonstrate and provide further evidence, that combining both tasks, semantic segmentation and depth completion, in a multi-task network can effectively improve the performance of each task. Code is available at https://github.com/juanb09111/semantic depth.
翻译:全方位理解对于自主机器的性能至关重要。在本文件中,我们提出一个新的端到端模式,用于进行语义分解和深度联合完成。最近的绝大多数方法都作为独立任务发展了语义分解和深度完成。我们的方法依靠RGB和稀薄的深度作为模型的投入,并制作了一个密集的深度图和相应的语义分解图像。它包括一个地物提取器、一个深度完成分支、一个语义分解分支和一个联合分支,以进一步处理语义和深度信息。在虚拟KITTI 2数据集上进行的实验,展示并提供了进一步的证据,证明将两种任务、语义分解和深度完成结合起来,在一个多塔斯克网络上可以有效地改进每项任务的绩效。代码可在https://github.com/juanb09111/semantic 深度上查阅。