项目名称: 纳米结构铝硅合金强韧化微观机制的三维透射电镜研究

项目编号: No.51501022

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 一般工业技术

项目作者: 冯宗强

作者单位: 重庆大学

项目金额: 21万元

中文摘要: 在高强度基础上实现强塑性匹配是纳米结构金属材料研究的重要目标。在纳米结构Al-1%Si合金中引入在晶界择优析出和晶内弥散分布的纳米Si颗粒可使材料在获得高强度的同时保持良好的塑性,这可能与塑性变形过程中形变位错与上述具有特征分布的纳米Si颗粒及晶界的强烈交互作用有关。为深入理解这种交互作用,需要对晶界和基体中纳米Si 颗粒的三维分布特性、形变位错的三维组态及其随应变的演化进行精确表征。传统透射电镜表征方法具有重叠投影效应,无法实现对微观结构的三维表征。本项目采用透射电镜衍衬像三维重构技术,分别精确表征纳米结构Al-1%Si合金中纳米Si颗粒的三维分布和位错结构的三维组态,建立纳米Si颗粒三维分布特征和位错结构三维特征随应变演化的相互关系,从而阐明塑性变形过程中位错与颗粒的交互作用机理及其对材料加工硬化和强塑性的关系。研究结果将丰富三维材料科学,并为优化设计纳米结构材料提供理论指导。

中文关键词: 铝合金;位错;位错结构;纳米颗粒;三维透射电子显微镜

英文摘要: Achieving optimum combination of strength and ductility is an important goal for high strength nanostructured metals and alloys. Our recent studies have shown that high strength and ductility can be obtained in nanostructured Al-1%Si alloy with dispersion of Si nanoparticles. The interaction of dislocations with Si nanoparticles and grain boundaries is considered to play a role in the enhanced strength and ductility combination. To reach a conclusive conclusion requires a precise 3D characterization of morphology and spatial distribution of nanoparticles and dislocation structures. In this project, we apply 3D TEM techniques, including bright field image tomography and weak beam dislocation tomography, to map the spatial distribution of Si nanoparticles and dislocation structures with an aim to understand the interaction mechanisms between the nanoparticles and dislocations during plastic deformation. The results will bring new insight into the mechanisms controlling the strength and ductility in nanostructured alloys with dispersion of nanoparticles and provide guidance for the development of advanced structural alloys.

英文关键词: Nanostructured materials;Dislocations;Dislocation boundaries;Nanoparticles;3D TEM

成为VIP会员查看完整内容
0

相关内容

前沿综述:集体智能与深度学习的交叉进展
专知会员服务
72+阅读 · 2022年2月6日
【ETH博士论文】贝叶斯深度学习,241页pdf
专知会员服务
125+阅读 · 2022年1月16日
专知会员服务
66+阅读 · 2021年5月21日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
182+阅读 · 2020年11月23日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
27+阅读 · 2021年2月17日
小贴士
相关VIP内容
前沿综述:集体智能与深度学习的交叉进展
专知会员服务
72+阅读 · 2022年2月6日
【ETH博士论文】贝叶斯深度学习,241页pdf
专知会员服务
125+阅读 · 2022年1月16日
专知会员服务
66+阅读 · 2021年5月21日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
182+阅读 · 2020年11月23日
相关资讯
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
一文读懂Attention机制
机器学习与推荐算法
63+阅读 · 2020年6月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员