A variational formulation for accelerated optimization on normed spaces was introduced in Wibisono et al., and later generalized to Riemannian manifolds in Duruisseaux and Leok. This variational framework was exploited on normed spaces in Duruisseaux et al. using time-adaptive geometric integrators to design efficient explicit algorithms for symplectic accelerated optimization, and it was observed that geometric discretizations which respect the time-rescaling invariance and symplecticity of the Lagrangian and Hamiltonian flows were substantially less prone to stability issues, and were therefore more robust, reliable, and computationally efficient. As such, it is natural to develop time-adaptive Hamiltonian variational integrators for accelerated optimization on Riemannian manifolds. In this paper, we consider the case of Riemannian manifolds embedded in a Euclidean space that can be characterized as the level set of a submersion. We will explore how holonomic constraints can be incorporated in discrete variational integrators to constrain the numerical discretization of the Riemannian Hamiltonian system to the Riemannian manifold, and we will test the performance of the resulting algorithms by solving eigenvalue and Procrustes problems formulated as optimization problems on the unit sphere and Stiefel manifold.


翻译:在Wibisono等人公司引进了加速规范空间优化的变式配方,后来推广到Durisseaux和Leek的Riemannian管道。这种变式框架在Durisseaux和al的规范空间中被利用,利用时间调整的几何集成器设计出高效的全方位加速优化显式算法,发现尊重拉格朗江和汉密尔顿河流动时间调整的变异性和混杂性的几何分化方法,对稳定问题的影响大为减少,因此更加强大、可靠和计算效率更高。因此,开发适应时间调整的汉密尔密尔顿和他人变异化器自然地用于加速优化里曼管道的优化。在本文中,我们考虑了位于欧几里米德空间内、可定性为沉积层的里曼河流体流的分解分解分解器的例子。我们将如何将霍罗洛多米克的分解调制融入离式调制,以限制我们所形成的里曼号模型和里曼式的多式标准解式系统,从而限制里曼的里曼的里曼式标准化的里卡列斯定式系统。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【经典书】统计学理论,925页pdf
专知会员服务
166+阅读 · 2020年12月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
【经典书】统计学理论,925页pdf
专知会员服务
166+阅读 · 2020年12月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员