Precise pick-and-place is essential in robotic applications. To this end, we define a novel exact training method and an iterative inference method that improve pick-and-place precision with Transporter Networks. We conduct a large scale experiment on 8 simulated tasks. A systematic analysis shows, that the proposed modifications have a significant positive effect on model performance. Considering picking and placing independently, our methods achieve up to 60% lower rotation and translation errors than baselines. For the whole pick-and-place process we observe 50% lower rotation errors for most tasks with slight improvements in terms of translation errors. Furthermore, we propose architectural changes that retain model performance and reduce computational costs and time. We validate our methods with an interactive teaching procedure on real hardware. Supplementary material will be made available at: https://gergely-soti.github.io/p
翻译:精密选取和选址对于机器人应用至关重要。 为此, 我们定义了一种新的精确培训方法和迭代推论方法, 改进了运输网络的选取和地点精确度。 我们对8项模拟任务进行了大规模实验。 系统分析显示, 提议的修改对模型性能有显著的积极影响。 单独挑选和安排, 我们的方法比基线的旋转和翻译错误低60%。 对于整个选址过程, 我们观察到大多数任务的轮换差差低50%, 翻译错误略有改善 。 此外, 我们建议进行建筑修改, 保留模型性能, 并减少计算成本和时间。 我们验证我们的方法, 在实际硬件上采用交互式教学程序。 补充材料将在以下网址上提供: https://gerly-soti.githubio/p。