The penetration of embedded devices in networks that support critical applications has rendered them a lucrative target for attackers and evildoers. However, traditional protection mechanisms may not be supported due to the memory and computational limitations of these systems. Recently, the analysis of electromagnetic (EM) emanations has gathered the interest of the research community. Thus, analogous protection systems have emerged as a viable solution e.g., for providing external, non-intrusive control-flow attestation for resource-constrained devices. Unfortunately, the majority of current work fails to account for the implications of real-life factors, predominantly the impact of environmental noise. In this work, we introduce a framework that integrates singular value decomposition (SVD) along with outlier detection for discovering malicious modifications of embedded software even under variable conditions of noise. Our proposed framework achieves high detection accuracy i.e., above 93\% AUC score for unknown attacks, even for extreme noise conditions i.e., -10 SNR. To the best of our knowledge, this is the first time this realistic limiting factor, i.e., environmental noise, is successfully addressed in the context of EM-based anomaly detection for embedded devices.
翻译:支持关键应用的网络中嵌入装置的渗透使得这些装置成为攻击者和不法分子的一个有利可图的目标,然而,由于这些系统的记忆和计算局限性,传统保护机制可能得不到支持。最近,对电磁(EM)功能的分析引起了研究界的兴趣。因此,类似的保护系统已成为可行的解决办法,例如为资源紧缺的装置提供外部、非侵入性控制流证明。不幸的是,目前的工作大部分没有考虑到实际生活因素的影响,主要是环境噪音的影响。在这项工作中,我们引入了一种框架,将单值分解(SVD)与发现内嵌软件恶意修改的外部探测相结合,即使在噪音多变的情况下也是如此。我们提议的框架取得了很高的检测准确性,即即使对极端的噪音条件(即-10 SNR)而言,对未知的攻击超过93 ASUC分数。 据我们所知,这是第一次在基于EM的嵌入式装置检测中成功解决这一现实的限制因素,即环境噪音。