The penetration of embedded devices in networks that support critical applications has rendered them a lucrative target for attackers and evildoers. However, traditional protection mechanisms may not be supported due to the memory and computational limitations of these systems. Recently, the analysis of electromagnetic (EM) emanations has gathered the interest of the research community. Thus, analogous protection systems have emerged as a viable solution e.g., for providing external, non-intrusive control-flow attestation for resource-constrained devices. Unfortunately, the majority of current work fails to account for the implications of real-life factors, predominantly the impact of environmental noise. In this work, we introduce a framework that integrates singular value decomposition (SVD) along with outlier detection for discovering malicious modifications of embedded software even under variable conditions of noise. Our proposed framework achieves high detection accuracy i.e., above 93\% AUC score for unknown attacks, even for extreme noise conditions i.e., -10 SNR. To the best of our knowledge, this is the first time this realistic limiting factor, i.e., environmental noise, is successfully addressed in the context of EM-based anomaly detection for embedded devices.


翻译:支持关键应用的网络中嵌入装置的渗透使得这些装置成为攻击者和不法分子的一个有利可图的目标,然而,由于这些系统的记忆和计算局限性,传统保护机制可能得不到支持。最近,对电磁(EM)功能的分析引起了研究界的兴趣。因此,类似的保护系统已成为可行的解决办法,例如为资源紧缺的装置提供外部、非侵入性控制流证明。不幸的是,目前的工作大部分没有考虑到实际生活因素的影响,主要是环境噪音的影响。在这项工作中,我们引入了一种框架,将单值分解(SVD)与发现内嵌软件恶意修改的外部探测相结合,即使在噪音多变的情况下也是如此。我们提议的框架取得了很高的检测准确性,即即使对极端的噪音条件(即-10 SNR)而言,对未知的攻击超过93 ASUC分数。 据我们所知,这是第一次在基于EM的嵌入式装置检测中成功解决这一现实的限制因素,即环境噪音。

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员