Quantum dynamics, typically expressed in the form of a time-dependent Schr\"odinger equation with a Hermitian Hamiltonian, is a natural application for quantum computing. However, when simulating quantum dynamics that involves the emission of electrons, it is necessary to use artificial boundary conditions (ABC) to confine the computation within a fixed domain. The introduction of ABCs alters the Hamiltonian structure of the dynamics, and existing quantum algorithms can not be directly applied since the evolution is no longer unitary. The current paper utilizes a recently introduced Schr\"odingerisation method (Jin et al. arXiv:2212.13969 and arXiv:2212.14703) that converts non-Hermitian dynamics to a Schr\"odinger form, for the artificial boundary problems. We implement this method for three types of ABCs, including the complex absorbing potential technique, perfectly matched layer methods, and Dirichlet-to-Neumann approach. We analyze the query complexity of these algorithms, and perform numerical experiments to demonstrate the validity of this approach. This helps to bridge the gap between available quantum algorithms and computational models for quantum dynamics in unbounded domains.
翻译:量子动力学通常表示为具有埃尔米特哈密顿量的时间相关薛定谔方程形式,是量子计算的自然应用。然而,当模拟涉及发射电子的量子动力学时,需要使用人工边界条件(ABC)来将计算限制在固定的域内。引入ABCs改变了动力学的哈密顿结构,并且现有的量子算法无法直接应用,因为进化不再是幺正的。本文利用最近引入的Schr\"odinger化方法(Jin等人的arXiv:2212.13969和arXiv:2212.14703)将非埃尔米特动力学转换为Schr\"odinger形式,用于人工边界问题。我们将此方法实现于三种类型的ABCs,包括复吸收势技术,完美匹配层方法和迪利克雷-诺伊曼方法。分析了这些算法的查询复杂度,并进行了数值实验以证明此方法的有效性。这有助于弥补量子动力学在无界域中的可用量子算法和计算模型之间的差距。