The sixth generation (6G) mobile communication networks are expected to intelligently integrate into various aspects of modern digital society, including smart cities, homes, healthcare, transportation, and factories. While offering a multitude of services, it is likely that societies become increasingly reliant on 6G infrastructure. Any disruption to these digital services, whether due to human or technical failures, natural disasters, or terrorism, would significantly impact citizens' daily lives. Hence, 6G networks need not only to provide high-performance services but also to be resilient in maintaining essential services in the face of potentially unknown challenges. This paper introduces a comprehensive concept for designing resilient 6G communication networks, summarizing our initial studies within the German Open6GHub project. Adopting an interdisciplinary approach, we propose to embed physical and cyber resilience across all communication system layers, addressing electronics, physical channel, network components and functions, networks, services, and cross-layer and cross-infrastructure considerations. After reviewing the background on resilience concepts, definitions, and approaches, we introduce the proposed resilience-by-design (RBD) concept for 6G communication networks. We further elaborate on the proposed RBD concept along with selected 6G use-cases and present various open problems for future research on 6G resilience.
翻译:暂无翻译