We present a machine-learning framework to accurately characterize morphologies of Active Galactic Nucleus (AGN) host galaxies within $z<1$. We first use PSFGAN to decouple host galaxy light from the central point source, then we invoke the Galaxy Morphology Network (GaMorNet) to estimate whether the host galaxy is disk-dominated, bulge-dominated, or indeterminate. Using optical images from five bands of the HSC Wide Survey, we build models independently in three redshift bins: low $(0<z<0.25)$, medium $(0.25<z<0.5)$, and high $(0.5<z<1.0)$. By first training on a large number of simulated galaxies, then fine-tuning using far fewer classified real galaxies, our framework predicts the actual morphology for $\sim$ $60\%-70\%$ host galaxies from test sets, with a classification precision of $\sim$ $80\%-95\%$, depending on redshift bin. Specifically, our models achieve disk precision of $96\%/82\%/79\%$ and bulge precision of $90\%/90\%/80\%$ (for the 3 redshift bins), at thresholds corresponding to indeterminate fractions of $30\%/43\%/42\%$. The classification precision of our models has a noticeable dependency on host galaxy radius and magnitude. No strong dependency is observed on contrast ratio. Comparing classifications of real AGNs, our models agree well with traditional 2D fitting with GALFIT. The PSFGAN+GaMorNet framework does not depend on the choice of fitting functions or galaxy-related input parameters, runs orders of magnitude faster than GALFIT, and is easily generalizable via transfer learning, making it an ideal tool for studying AGN host galaxy morphology in forthcoming large imaging survey.
翻译:我们推出一个机器学习框架, 以精确地在 $< 1 美元 范围内定位 AGN 所在星系的形态。 我们首先使用 PSFGAN 将星系的光从中央点源分解开, 然后我们使用银河地形网络( GaMorNet ) 来估计主星系是磁盘主导、 膨胀主导, 还是不确定。 我们使用HSC宽调查五个波段的光学图像, 独立地在三个红轮比标中建立模型: 低( 0 < z < 0. 25 ) 美元, 中( 0. 25 < z < 0. 0.5) 美元) 和高( 0. 0.5 < z < 1.0 美元) 。 通过对大量模拟星系进行培训, 然后用少得多的分类真实星系进行微调整, 我们的框架预测主星系实际的形态学价值为60美元- 70 美元, 用80 美元 至95 美元 的分类精确度, 取决于 红轮比 。 具体而言, 我们的模型实现了硬盘精确度精确度精确度精确度精确度 的GA_8/8/8xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx