This paper addresses the challenges of delivering fine-grained Quality of Service (QoS) and communication determinism over 5G wireless networks for real-time and autonomous needs of Industrial Internet of Things (IIoT) applications while effectively sharing network resources. Specifically, this work presents DANSM, a dynamic and autonomous network slice management middleware for 5G-based IIoT use cases, such as adaptive robotic repair. The novelty of our approach lies in (1) its use of multiple M/M/1 queues to formulate a 5G network resource scheduling optimization problem comprising service-level and system-level objectives; (2) the design of a heuristics-based solution to overcome the NP-hard properties of this optimization problem, and (3) how it dynamically and autonomously provisions and manages 5G network slices used to deliver predictable communications to IIoT use cases. The results of experiments evaluating DANSM on our testbed comprising a Free5GC-based core and UERANSIM-based simulations reveal that it can efficiently balance the traffic load in the data plane thereby reducing the end-to-end response time and improve the service performance by finishing 34% more subtasks than Modified Greedy Algorithm (MGA), 64% more subtasks than First Fit Descending (FFD) approach and 22% more subtasks than Best Fit Descending (BFD) approach while minimizing the operational costs.
翻译:本文阐述了在5G无线网络上提供优质服务质量(Qos)和通信确定性,满足工业Tings互联网应用(IIOT)应用的实时和自主需要,同时有效共享网络资源的挑战。具体地说,这项工作为5G基础IIoT使用案例(如适应性机器人修理)提供了动态和自主的网络切片管理中继器DANSM,这是一个动态和自主的网络切片管理中继器。我们的方法的新颖之处在于:(1) 利用多M/M/1队列来制定由服务级别和系统级别目标组成的5G网络资源调度优化问题;(2) 设计基于超链接的解决方案,以克服该优化问题的NP-硬性特性,以及(3) 如何以动态和自主的方式管理5G网络切片,用于向IIOT使用案例提供可预测的通信。我们测试台的DASMM(基于自由5GC的核心和UERANSIM的模拟)的实验结果表明,它能够有效地平衡数据平面的交通负荷,从而减少端端端端反应时间,并改进服务绩效,比GEMFA的亚值34%(比FDAF)更低成本。