In federated learning (FL) systems, e.g., wireless networks, the communication cost between the clients and the central server can often be a bottleneck. To reduce the communication cost, the paradigm of communication compression has become a popular strategy in the literature. In this paper, we focus on biased gradient compression techniques in non-convex FL problems. In the classical setting of distributed learning, the method of error feedback (EF) is a common technique to remedy the downsides of biased gradient compression. In this work, we study a compressed FL scheme equipped with error feedback, named Fed-EF. We further propose two variants: Fed-EF-SGD and Fed-EF-AMS, depending on the choice of the global model optimizer. We provide a generic theoretical analysis, which shows that directly applying biased compression in FL leads to a non-vanishing bias in the convergence rate. The proposed Fed-EF is able to match the convergence rate of the full-precision FL counterparts under data heterogeneity with a linear speedup. Moreover, we develop a new analysis of the EF under partial client participation, which is an important scenario in FL. We prove that under partial participation, the convergence rate of Fed-EF exhibits an extra slow-down factor due to a so-called ``stale error compensation'' effect. A numerical study is conducted to justify the intuitive impact of stale error accumulation on the norm convergence of Fed-EF under partial participation. Finally, we also demonstrate that incorporating the two-way compression in Fed-EF does not change the convergence results. In summary, our work conducts a thorough analysis of the error feedback in federated non-convex optimization. Our analysis with partial client participation also provides insights on a theoretical limitation of the error feedback mechanism, and possible directions for improvements.


翻译:在联合学习系统(FL)中,例如无线网络,客户和中央服务器之间的通信成本往往是一个瓶颈。为了降低通信成本,通信压缩范式已成为文献中流行的战略。在本文中,我们侧重于非康维克斯FL问题中的偏斜梯度压缩技术。在传统的分布式学习环境中,错误反馈方法是纠正偏差梯度压缩的下方的一个常见方法。在这项工作中,我们研究一个压缩的FL计划,配有错误反馈,称为FFD-EF。我们进一步提出了两个变式:Fed-EF-SGD和Fed-EF-AMS,这取决于全球模型优化师的选择。我们提供了一种通用理论分析,表明直接应用偏差梯度压缩技术在非康维利FL问题中导致非加速参与偏差。拟议的FDFEF方法能够与数据偏差下完全精准的FL对等对口单位的趋同速度和线性变换。此外,我们根据部分客户端对FDR(F)参与率的偏差进行新的分析,我们也在FDRloral-lder Referal Referent Fal 中将一个重要推算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Nonparametric Regression for 3D Point Cloud Learning
Arxiv
0+阅读 · 2023年1月26日
Arxiv
0+阅读 · 2023年1月26日
Arxiv
22+阅读 · 2021年12月19日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员