Making decisions in complex driving environments is a challenging task for autonomous agents. Imitation learning methods have great potentials for achieving such a goal. Adversarial Inverse Reinforcement Learning (AIRL) is one of the state-of-art imitation learning methods that can learn both a behavioral policy and a reward function simultaneously, yet it is only demonstrated in simple and static environments where no interactions are introduced. In this paper, we improve and stabilize AIRL's performance by augmenting it with semantic rewards in the learning framework. Additionally, we adapt the augmented AIRL to a more practical and challenging decision-making task in a highly interactive environment in autonomous driving. The proposed method is compared with four baselines and evaluated by four performance metrics. Simulation results show that the augmented AIRL outperforms all the baseline methods, and its performance is comparable with that of the experts on all of the four metrics.


翻译:在复杂的驱动环境中决策对于自主推动者来说是一项艰巨的任务。 模拟学习方法对于实现这一目标具有巨大的潜力。 反反强化学习(AIRL)是能够同时学习行为政策和奖赏功能的最先进的模仿学习方法之一,但只有在没有引入互动的简单和静态环境中才能证明这一点。 在本文件中,我们通过学习框架中的语义奖赏来提高和稳定AIRL的绩效。此外,我们调整扩大的AIRL, 使其适应在高度互动的自主驱动环境中更实际和更具挑战性的决策任务。拟议方法与四个基线进行比较,并用四个业绩衡量标准进行评估。模拟结果表明,增强的AIRL比所有基线方法都好,其绩效与所有四个衡量标准的专家相似。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【论文】欺骗学习(Learning by Cheating)
专知会员服务
26+阅读 · 2020年1月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2020年6月16日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【论文】欺骗学习(Learning by Cheating)
专知会员服务
26+阅读 · 2020年1月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员