Deriving sophisticated 3D motions from sparse keyframes is a particularly challenging problem, due to continuity and exceptionally skeletal precision. The action features are often derivable accurately from the full series of keyframes, and thus, leveraging the global context with transformers has been a promising data-driven embedding approach. However, existing methods are often with inputs of interpolated intermediate frame for continuity using basic interpolation methods with keyframes, which result in a trivial local minimum during training. In this paper, we propose a novel framework to formulate latent motion manifolds with keyframe-based constraints, from which the continuous nature of intermediate token representations is considered. Particularly, our proposed framework consists of two stages for identifying a latent motion subspace, i.e., a keyframe encoding stage and an intermediate token generation stage, and a subsequent motion synthesis stage to extrapolate and compose motion data from manifolds. Through our extensive experiments conducted on both the LaFAN1 and CMU Mocap datasets, our proposed method demonstrates both superior interpolation accuracy and high visual similarity to ground truth motions.


翻译:通过稀疏的关键帧派生复杂的3D动作是一个尤为具有挑战性的问题,由于连续性和极其骨架精度。行动特征通常可以从完整的关键帧序列中精确推导得出,因此,利用变换器来借助全局上下文进行数据驱动的嵌入方法是一种有前途的方法。然而,现有方法通常是通过使用基本的关键帧插值方法得到的插值中间帧输入来实现连续性,这导致在培训过程中出现微不足道的局部极小值。在本文中,我们提出了一个新的框架来制定具有基于关键帧的约束的潜在运动流形,从而考虑到连续中间符号表示的性质。特别地,我们提出的框架由两个阶段组成,用于确定潜在运动子空间,即关键帧编码阶段和中间符号生成阶段,以及一个随后的运动综合阶段,用于从流形中外推和组合运动数据。通过我们在LaFAN1和CMU Mocap数据集上进行的广泛实验,我们提出的方法展示了比率插值准确度更高的插值精度和与地面实况运动相似的高视觉相似度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡点云时空】FlowNet3D:学习三维点云中的场景流
泡泡机器人SLAM
41+阅读 · 2019年5月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2023年5月15日
Arxiv
0+阅读 · 2023年5月14日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡点云时空】FlowNet3D:学习三维点云中的场景流
泡泡机器人SLAM
41+阅读 · 2019年5月19日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员