Understanding forest health is of great importance for the conservation of the integrity of forest ecosystems. The monitoring of forest health is, therefore, indispensable for the long-term conservation of forests and their sustainable management. In this regard, evaluating the amount and quality of dead wood is of utmost interest as they are favorable indicators of biodiversity. Apparently, remote sensing-based techniques have proven to be more efficient and sustainable with unprecedented accuracy in forest inventory. However, the application of these techniques is still in its infancy with respect to dead wood mapping. This study investigates for the first time the automatic classification of individual coniferous trees into five decay stages (live, declining, dead, loose bark, and clean) from combined airborne laser scanning data and color infrared images using Machine Learning methods. First, CIR colorized point clouds are created by fusing the ALS point clouds and the color infrared images. Then, with the colorized point cloud, individual tree segmentation is conducted using a semi-automatic approach, which are further projected onto four orthogonal planes displaying the side views of the trees in 2D. Finally, the classification is conducted on the multispectral point clouds and projected images using the three Machine Learning algorithms. All models achieved promising results, reaching overall accuracy (OA) of up to 90.9%, 90.6%, and 80.6% for CNN, RF, and PointNet, respectively. The experimental results reveal that the image-based approach notably outperformed the point cloud-based one, while spectral image texture is of the highest relevance to the success of categorizing tree decay. Our models could therefore be used for automatic determination of single tree decay stages and landscape-wide assessment of dead wood amount and quality using modern airborne remote sensing.


翻译:了解森林健康对保护森林生态系统的完整性非常重要。因此,对森林健康进行监测对于长期保护森林和可持续管理是必不可少的。在这方面,评估死树的数量和质量至关重要,因为它们是生物多样性的有利指标。显然,遥感技术已经证明在森林清查方面具有前所未有的精度和效率。然而,这些技术的应用对于死木映射仍处于萌芽阶段。本研究首次探讨了使用机器学习方法从合成航空激光雷达数据和彩色红外图像中将单个针叶树木分类为五个腐败阶段(活着、逐渐衰退、死亡、松皮和清洁)。首先,通过融合ALS点云和彩色红外图像来创建CIR着色点云。然后,使用半自动方法对着色点云进行个体树木分割,进一步投影到显示树木侧面视图的四个正交面上。最后,使用三种机器学习算法对多光谱点云和投影图像进行分类。所有模型均取得了有希望的结果,对于CNN,RF和PointNet,OA可以分别达到90.9%,90.6%和80.6%。实验结果表明,基于图像的方法明显优于基于点云的方法,而光谱图像纹理对于树木腐烂分类的成功具有最高的相关性。因此,我们的模型可以用于自动确定单个树木的腐败阶段,并使用现代航空遥感对死木数量和质量进行广泛评估。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月15日
Arxiv
103+阅读 · 2021年6月8日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
【泡泡一分钟】Matterport3D: 从室内RGBD数据集中训练 (3dv-22)
泡泡机器人SLAM
16+阅读 · 2017年12月31日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员