This paper proposes a Newton type method to solve numerically the eigenproblem of several diagonalizable matrices, which pairwise commute. A classical result states that these matrices are simultaneously diagonalizable. From a suitable system of equations associated to this problem, we construct a sequence which converges quadratically towards the solution. This construction is not based on the resolution of linear system as it is the case in the classical Newton method. Moreover, we provide a theoretical analysis of this construction to exhibit a condition to get a quadratic convergence. We also propose numerical experiments, which illustrate the theoretical results. This shows that classical QR method would gain in efficiency incorporating the tests given by the theory.


翻译:本文建议了一种牛顿型方法, 以数字方式解决数种可分解的矩阵的二元问题, 这些矩阵是双向通勤的。 经典结果显示这些矩阵同时可以对等化。 我们从与这一问题相关的一个适当的方程式系统中, 构建了一个将二次相交的序列。 这个构造不是基于线性系统的分辨率, 正如古典牛顿法那样 。 此外, 我们对这一构造进行理论分析, 以展示获得二次趋同的条件 。 我们还提出数字实验, 以说明理论结果 。 这显示经典的 QR 方法将提高效率, 将理论给出的测试纳入其中 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
41+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2018年1月19日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年12月16日
VIP会员
相关资讯
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2018年1月19日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员