Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) \cite{Weinan2017The} for second order elliptic equations with Drichilet, Neumann and Robin boundary condition, respectively. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with smooth activation functions including logistic and hyperbolic tangent functions. Our results show how to set the hyper-parameter of depth and width to achieve the desired convergence rate in terms of number of training samples.


翻译:使用深神经网络解决PDE最近引起了许多关注。 但是, 深学习方法的运行远远落后于其成功的经验。 在本文中, 我们提供了对深Ritz方法( DRM)\ cite{Weinan2017The} 的严格数字分析, 分别用于Drichilet、 Neumann 和 Robin 边界条件的第二顺序椭圆方程。 我们用具有平稳激活功能的深网络, 包括后勤和双曲正切功能, 为DRM 建立了第一个以$H1美元为标准的非自然聚合率。 我们的结果显示如何设定深度和宽度的超分数, 以培训样本的数量达到预期的趋同率 。

0
下载
关闭预览

相关内容

DRM:ACM Workshop on Digital Rights Management。 Explanation:数码版权管理研讨会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/drm/
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月24日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员