Point completion refers to complete the missing geometries of objects from partial point clouds. Existing works usually estimate the missing shape by decoding a latent feature encoded from the input points. However, real-world objects are usually with diverse topologies and surface details, which a latent feature may fail to represent to recover a clean and complete surface. To this end, we propose a skeleton-bridged point completion network (SK-PCN) for shape completion. Given a partial scan, our method first predicts its 3D skeleton to obtain the global structure, and completes the surface by learning displacements from skeletal points. We decouple the shape completion into structure estimation and surface reconstruction, which eases the learning difficulty and benefits our method to obtain on-surface details. Besides, considering the missing features during encoding input points, SK-PCN adopts a local adjustment strategy that merges the input point cloud to our predictions for surface refinement. Comparing with previous methods, our skeleton-bridged manner better supports point normal estimation to obtain the full surface mesh beyond point clouds. The qualitative and quantitative experiments on both point cloud and mesh completion show that our approach outperforms the existing methods on various object categories.
翻译:完成点指完成部分点云中天体缺失的几何。 现有的工程通常通过解码从输入点编码的潜在特征来估计缺失的形状。 但是, 现实世界的物体通常具有不同的地形和表面细节, 潜在特征可能无法代表恢复干净完整的表面。 为此, 我们提出一个骨架桥点完成网络( SK- PCN) 以完成形状。 通过部分扫描, 我们的方法首先预测其 3D 骨架以获得全球结构, 并通过学习从骨骼点移位来完成表面表面。 我们将形状的完成分解为结构估计和表面重建, 从而减轻学习困难, 并有利于我们在地面上获取细节的方法。 此外, 考虑到编码输入点中缺失的特征, SK- PCN 采用了一个本地调整战略, 将输入点云与我们预测的表面精细化结果结合起来。 与先前的方法相比, 我们的骨架桥方式更好地支持点正常估计, 以便从点云中获取全部表面网格。 在点云中进行定性和定量实验, 两种物体的完成方法都显示我们的方法。