We study deterministic online embeddings of metrics spaces into normed spaces and into trees against an adaptive adversary. Main results include a polynomial lower bound on the (multiplicative) distortion of embedding into Euclidean spaces, a tight exponential upper bound on embedding into the line, and a $(1+\epsilon)$-distortion embedding in $\ell_\infty$ of a suitably high dimension.
翻译:-----
本文研究针对自适应对手的度量空间的确定性在线嵌入到规范空间和树中的方法。主要结论包括嵌入到欧几里得空间的(乘法)畸变的多项式下界,嵌入到线性空间的紧密指数上界,以及在适当高维的 $\ell_\infty$ 空间中的 $(1+\epsilon)$-畸变嵌入。