In this paper we first study $k \times n$ Youden rectangles of small orders. We have enumerated all Youden rectangles for a range of small parameter values, excluding the almost square cases where $k = n-1$, in a large scale computer search. In particular, we verify the previous counts for $(n,k) = (7,3), (7,4)$, and extend this to the cases $(11,5), (11,6), (13,4)$ and $(21,5)$. For small parameter values where no Youden rectangles exist, we also enumerate rectangles where the number of symbols common to two columns is always one of two possible values, differing by 1, which we call \emph{near Youden rectangles}. For all the designs we generate, we calculate the order of the autotopism group and investigate to which degree a certain transformation can yield other row-column designs, namely double arrays, triple arrays and sesqui arrays. Finally, we also investigate certain Latin rectangles with three possible pairwise intersection sizes for the columns and demonstrate that these can give rise to triple and sesqui arrays which cannot be obtained from Youden rectangles, using the transformation mentioned above.
翻译:在本文中, 我们首先研究小订单的 $k\ time n n$ 您的矩形 。 我们已经为一系列小参数值列出了所有您要的矩形, 不包括在大规模计算机搜索中, $k = n-1$, 大规模计算机搜索中的几乎方形案例。 特别是, 我们核查以前对$( n, k) = 7, 3, (7, 4) 的计数, 并将这一计数扩展至 $( 11, 5, 11, 6, 13, 14, 美元 和 $( 21, 5美元 ) 。 对于不存在 Youden 矩形的小型参数值, 我们还列出了所有您所选的矩形, 两列中共有的符号数总是两个可能的值之一, 不同的, 我们称之为 1。 对于我们生成的所有设计, 我们计算了自动组的顺序, 并调查一定的变形能产生其他的行柱形设计, 即双阵形、 三列和秒形阵列的阵形阵列。 最后, 我们还要调查某些拉丁方形的矩形,, 3个相交叉阵形的阵列不能从柱形向上移动, 。