This paper investigates the issue of determining the dimensions of row and column factor spaces in matrix-valued data. Exploiting the eigen-gap in the spectrum of sample second moment matrices of the data, we propose a family of randomised tests to check whether a one-way or two-way factor structure exists or not. Our tests do not require any arbitrary thresholding on the eigenvalues, and can be applied with no restrictions on the relative rate of divergence of the cross-sections to the sample sizes as they pass to infinity. Although tests are based on a randomization which does not vanish asymptotically, we propose a de-randomized, strong (based on the Law of the Iterated Logarithm) decision rule to choose in favor or against the presence of common factors. We use the proposed tests and decision rule in two ways. We further cast our individual tests in a sequential procedure whose output is an estimate of the number of common factors. Our tests are built on two variants of the sample second moment matrix of the data: one based on a row (or column) flattened version of the matrix-valued sequence, and one based on a projection-based method. Our simulations show that both procedures work well in large samples and, in small samples, the one based on the projection method delivers a superior performance compared to existing methods in virtually all cases considered.


翻译:本文调查了在矩阵估值数据中确定行和列系数空间尺寸的问题。 在数据样本第二秒矩阵的频谱中, 我们提出一组随机测试, 以检查单向或双向要素结构是否存在。 我们的测试并不要求对单向或双向要素结构进行任意的阈值, 并且可以不加限制地应用, 其截面与样本大小之间的相对差异率, 当它们到达无限度时, 我们的测试建立在随机化的基础上, 并且不会轻易消失。 虽然测试是基于随机化的, 我们提议了一种分流、 强的( 根据迭代逻辑法) 决定, 以有利于或不利于存在共同因素的方式做出选择。 我们用两种方式使用拟议的测试和决定规则。 我们进一步将单项测试置于一个顺序程序, 其产出是对常见因素的数量进行估计。 我们的测试建立在数据第二秒样本矩阵的两种变异体上: 一种基于一行( 或一列) 的、 强度( 根据迭代的逻辑) 规则, 选择有利于或反对共同存在共同因素。 我们的当前预测方法中, 以一个基于一个已考虑的模型模拟的模型的、 以及一个快速的、 显示现有的模型的、 显示的、 以及基于一个快速的模型的、 的、 以及基于整个的模型的、 和整个的模型的模型的模型的、 显示的大规模的模拟的模型的、 显示的、 显示的、 的、 和整个的大规模的模型的、 的模型的模型的模型的模型的模型的模型的模型的模型的模型。

0
下载
关闭预览

相关内容

【AAAI2022】锚点DETR:基于transformer检测器的查询设计
专知会员服务
12+阅读 · 2021年12月31日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月18日
Arxiv
9+阅读 · 2021年3月8日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
已删除
将门创投
6+阅读 · 2019年1月11日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员