In this letter, we develop an $\ell_2$-box maximum likelihood (ML) formulation for massive multiple-input multiple-output (MIMO) quadrature amplitude modulation (QAM) signal detection and customize an alternating direction method of multipliers (ADMM) algorithm to solve the nonconvex optimization model. In the $\ell_2$-box ADMM implementation, all variables are solved analytically. Moreover, several theoretical results related to convergence, iteration complexity, and computational complexity are presented. Simulation results demonstrate the effectiveness of the proposed $\ell_2$-box ADMM detector in comparison with state-of-the-arts approaches.
翻译:在这封信中,我们开发了一种$ell_2$-box最大可能性(ML)的配方,用于大规模多投入多输出量(MIMO)二次振动调控信号检测,并定制一种交替方向的乘数算法(ADMM)算法(ADMM),以解决非convex优化模型问题。在 $_2$-box ADMM 实施过程中,所有变量都在分析中得到解决。此外,还介绍了一些与趋同、循环复杂性和计算复杂性有关的理论结果。模拟结果表明,与最新方法相比,拟议的$@ell_2$-box ADMM 探测器的有效性。