Vine copulas are a flexible tool for high-dimensional dependence modeling. In this article, we discuss the generation of approximate model-X knockoffs with vine copulas. It is shown how Gaussian knockoffs can be generalized to Gaussian copula knockoffs. A convenient way to parametrize Gaussian copulas are partial correlation vines. We discuss how completion problems for partial correlation vines are related to Gaussian knockoffs. A natural generalization of partial correlation vines are vine copulas which are well suited for the generation of approximate model-X knockoffs. We discuss a specific D-vine structure which is advantageous to obtain vine copula knockoff models. In a simulation study, we demonstrate that vine copula knockoff models are effective and powerful for high-dimensional controlled variable selection.
翻译:葡萄干椰树是高维依赖性模型的灵活工具。 在文章中, 我们讨论以醋干椰树来生成大约的模型- X 的顶替。 我们展示了高斯的顶替如何可以普遍化为高斯的顶替。 平衡高斯的顶替阴极的方便方式是部分相交的葡萄树。 我们讨论的是部分相关葡萄树的完成问题如何与高斯的顶替有关。 部分相关葡萄树的自然概括化是完全适合生成大约的模型- X 顶替的葡萄干甘草。 我们讨论的是某种特定的D- vine 结构, 它有利于获得葡萄干椰树的顶替模型。 在模拟研究中, 我们证明葡萄干椰树的顶替模型对于高维度控制的变量选择是有效和强大的。