The order/dimension of models derived on the basis of data is commonly restricted by the number of observations, or in the context of monitored systems, sensing nodes. This is particularly true for structural systems (e.g., civil or mechanical structures), which are typically high-dimensional in nature. In the scope of physics-informed machine learning, this paper proposes a framework -- termed Neural Modal ODEs -- to integrate physics-based modeling with deep learning for modeling the dynamics of monitored and high-dimensional engineered systems. Neural Ordinary Differential Equations -- Neural ODEs are exploited as the deep learning operator. In this initiating exploration, we restrict ourselves to linear or mildly nonlinear systems. We propose an architecture that couples a dynamic version of variational autoencoders with physics-informed Neural ODEs (Pi-Neural ODEs). An encoder, as a part of the autoencoder, learns the abstract mappings from the first few items of observational data to the initial values of the latent variables, which drive the learning of embedded dynamics via physics-informed Neural ODEs, imposing a modal model structure on that latent space. The decoder of the proposed model adopts the eigenmodes derived from an eigen-analysis applied to the linearized portion of a physics-based model: a process implicitly carrying the spatial relationship between degrees-of-freedom (DOFs). The framework is validated on a numerical example, and an experimental dataset of a scaled cable-stayed bridge, where the learned hybrid model is shown to outperform a purely physics-based approach to modeling. We further show the functionality of the proposed scheme within the context of virtual sensing, i.e., the recovery of generalized response quantities in unmeasured DOFs from spatially sparse data.
翻译:以数据为基础的模型的顺序/尺寸通常受到观测次数的限制,或者在监测的系统、感知节点的范围内,对观测次数或感测节点的观察次数的限制。对于结构系统(例如民用或机械结构)来说尤其如此,这些系统通常是高度的。在物理学知情的机器学习范围内,本文件提出一个框架 -- -- 称为神经模量模型 -- -- 将基于物理的模型与用于模拟监测的和高维设计系统的动态的深层学习结合起来。神经普通的虚拟空间方位 -- -- 神经体内值被作为深层学习操作者加以利用。在开始探索时,我们仅限于线性或轻度的非线性系统。我们建议一个结构,将一个动态的变形自动变形器与物理学知情的Neural ODE(Pi-Neural Odes)相结合。一个编码,作为自动解析器的一部分,从最初的观测数据模型到隐性变异的初始值的抽象模型图解图(从最初的几件观察数据到初步值,这促使通过物理学了解内向内基的内基的内基的内基的内基的内基内基流的内基的内基的内基的内基流的内基体流的内基数, 显示的内基数,显示的内存的内基结构结构,将显示显示的模型的模型的模型显示的模型的模型的模型显示的一种结构结构结构结构系,显示的模型显示的一种结构显示的一种结构的模型显示的一种结构。