The foundational concept of Max-Margin in machine learning is ill-posed for output spaces with more than two labels such as in structured prediction. In this paper, we show that the Max-Margin loss can only be consistent to the classification task under highly restrictive assumptions on the discrete loss measuring the error between outputs. These conditions are satisfied by distances defined in tree graphs, for which we prove consistency, thus being the first losses shown to be consistent for Max-Margin beyond the binary setting. We finally address these limitations by correcting the concept of Max-Margin and introducing the Restricted-Max-Margin, where the maximization of the loss-augmented scores is maintained, but performed over a subset of the original domain. The resulting loss is also a generalization of the binary support vector machine and it is consistent under milder conditions on the discrete loss.
翻译:机器学习中的 Max- Margin 基本概念对于带有两个以上标签的输出空间来说是不恰当的。 在本文中, 我们显示 Max- Margin 损失只能与分类任务相一致, 前提是对测量输出错误的离散损失的高度限制性假设。 这些条件满足于树图中界定的距离, 对此我们证明是一致的, 因而是马克斯- Margin 在二进制设置之外的第一个损失。 我们最终通过纠正 Max- Margin 概念和引入限制-Max- Margin 来解决这些限制, 在那里, 损失加分得分的最大化得以维持, 而在原始域的一个子上完成 。 由此产生的损失也是二进制支持矢量机的一般化, 在离散损失的较轻的条件下是一致的 。