The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge. We present some results about token swapping on a tree, also known as "sorting with a transposition tree": 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a "happy leaf"), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves -- as all known approximation algorithms for the problem do -- has approximation factor at least $4/3$. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem -- weighted coloured token swapping -- is NP-complete on trees, even when they are restricted to be subdivided stars, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.
翻译:象征性交换问题的输入是一张图, 上面贴有1美元、 2美元、 v_ 2美元、 ldots、 v_n美元, 上面贴有标签的一美元、 2美元、 ldots、 n美元、 每个顶点的一美元。 目标是让所有美元= 1美元、\ldots、 n$ 使用最低数量的交换, 交换在边缘端端点交换标牌。 我们展示了在树上交换标牌交换的一些结果, 也称为“ 以变换树进行变换 ” : 1. 最佳交换序列可能需要在叶顶点上进行交换, 上面贴有正确的标牌( 快乐的叶子), 拆掉Vaughan 的折射。 2. 任何固定快乐叶的算法 -- 所有已知的近似算法都至少得到 4/3美元。 此外, 两种已知的2 套配方算算算法的算法, 甚至具有精确的颜色系数 2 。 3 。 一个最佳交换序列的颜色比重, 每个平整的颜色比值是这个颜色比值, 这个颜色比值是平整的图是 。