The input to the token swapping problem is a graph with vertices $v_1, v_2, \ldots, v_n$, and $n$ tokens with labels $1, 2, \ldots, n$, one on each vertex. The goal is to get token $i$ to vertex $v_i$ for all $i= 1, \ldots, n$ using a minimum number of swaps, where a swap exchanges the tokens on the endpoints of an edge. We present some results about token swapping on a tree, also known as "sorting with a transposition tree": 1. An optimum swap sequence may need to perform a swap on a leaf vertex that has the correct token (a "happy leaf"), disproving a conjecture of Vaughan. 2. Any algorithm that fixes happy leaves -- as all known approximation algorithms for the problem do -- has approximation factor at least $4/3$. Furthermore, the two best-known 2-approximation algorithms have approximation factor exactly 2. 3. A generalized problem -- weighted coloured token swapping -- is NP-complete on trees, even when they are restricted to be subdivided stars, but solvable in polynomial time on paths and stars. In this version, tokens and vertices have colours, and colours have weights. The goal is to get every token to a vertex of the same colour, and the cost of a swap is the sum of the weights of the two tokens involved.


翻译:象征性交换问题的输入是一张图, 上面贴有1美元、 2美元、 v_ 2美元、 ldots、 v_n美元, 上面贴有标签的一美元、 2美元、 ldots、 n美元、 每个顶点的一美元。 目标是让所有美元= 1美元、\ldots、 n$ 使用最低数量的交换, 交换在边缘端端点交换标牌。 我们展示了在树上交换标牌交换的一些结果, 也称为“ 以变换树进行变换 ” : 1. 最佳交换序列可能需要在叶顶点上进行交换, 上面贴有正确的标牌( 快乐的叶子), 拆掉Vaughan 的折射。 2. 任何固定快乐叶的算法 -- 所有已知的近似算法都至少得到 4/3美元。 此外, 两种已知的2 套配方算算算法的算法, 甚至具有精确的颜色系数 2 。 3 。 一个最佳交换序列的颜色比重, 每个平整的颜色比值是这个颜色比值, 这个颜色比值是平整的图是 。

0
下载
关闭预览

相关内容

【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
17+阅读 · 2020年9月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年8月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
【AAAI2021】 层次图胶囊网络
专知会员服务
82+阅读 · 2020年12月18日
专知会员服务
17+阅读 · 2020年9月6日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
8+阅读 · 2019年8月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员