Most mobile robots follow a modular sense-planact system architecture that can lead to poor performance or even catastrophic failure for visual inertial navigation systems due to trajectories devoid of feature matches. Planning in belief space provides a unified approach to tightly couple the perception, planning and control modules, leading to trajectories that are robust to noisy measurements and disturbances. However, existing methods handle uncertainties as costs that require manual tuning for varying environments and hardware. We therefore propose a novel trajectory optimization formulation that incorporates inequality constraints on uncertainty and a novel Augmented Lagrangian based stochastic differential dynamic programming method in belief space. Furthermore, we develop a probabilistic visibility model that accounts for discontinuities due to feature visibility limits. Our simulation tests demonstrate that our method can handle inequality constraints in different environments, for holonomic and nonholonomic motion models with no manual tuning of uncertainty costs involved. We also show the improved optimization performance in belief space due to our visibility model.
翻译:多数移动机器人都遵循模块式感知-规划系统架构,这种架构可能导致视觉惯性导航系统因轨迹不匹配而性能差甚至灾难性地失败。 信仰空间规划提供了一种统一的方法,将感知、规划和控制模块紧密地结合起来,从而形成对噪音测量和扰动的强力轨迹。 但是,现有方法处理不确定性,作为成本,需要手工调整不同环境和硬件。 因此,我们提出了一个新的轨迹优化配方,其中纳入了不确定性方面的不平等限制,并提出了一个新的拉格朗格基于随机增强的拉格朗格人基于信仰空间差异动态编程方法。 此外,我们开发了一种概率可见度模型,用以说明由于能见度限制而出现的不连续性。我们的模拟测试表明,我们的方法可以在不同环境中处理不平等制约,如holonomic和非hoolomic运动模型,而无需人工调整不确定性成本。 我们还展示了由于我们的可见度模型而在信仰空间中改进的优化性表现。