We prove that, for every $0 \leq t \leq 1$, the limiting distribution of the scale-normalized number of key comparisons used by the celebrated algorithm QuickQuant to find the $t$th quantile in a randomly ordered list has a Lipschitz continuous density function $f_t$ that is bounded above by $10$. Furthermore, this density $f_t(x)$ is positive for every $x > \min\{t, 1 - t\}$ and, uniformly in $t$, enjoys superexponential decay in the right tail. We also prove that the survival function $1 - F_t(x) = \int_x^{\infty}\!f_t(y)\,\mathrm{d}y$ and the density function $f_t(x)$ both have the right tail asymptotics $\exp [-x \ln x - x \ln \ln x + O(x)]$. We use the right-tail asymptotics to bound large deviations for the scale-normalized number of key comparisons used by QuickQuant.
翻译:我们证明,对于每1美元 $0\leq t\leq 1美元来说,用于在随机订购的列表中查找美元四分位数的有节奏算算法QuickQuant用于查找随机订购列表中美元数的关键比较比例正正数的分布是利普西茨连续密度函数$f_t美元,其约束值为10美元以上。此外,对于每美元 $ > min ⁇ t, 1 - t ⁇ $, 并且统一以美元为单位, 右尾巴享有超尽性衰变。 我们还证明生存函数 1 - F_t(x) =\ int_xinfinfty@f_t(y)\,\\ mathrm{d}y 美元, 而密度函数$f_t(x) 都具有正确的尾巴等量 $[-xxxxxxxxxxxxxxxxxxxxxxlnxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx