A new conservative finite element solver for the three-dimensional steady magnetohydrodynamic (MHD) kinematics equations is presented.The solver utilizes magnetic vector potential and current density as solution variables, which are discretized by H(curl)-conforming edge-element and H(div)-conforming face element respectively. As a result, the divergence-free constraints of discrete current density and magnetic induction are both satisfied. Moreover the solutions also preserve the total magnetic helicity. The generated linear algebraic equation is a typical dual saddle-point problem that is ill-conditioned and indefinite. To efficiently solve it, we develop a block preconditioner based on constraint preconditioning framework and devise a preconditioned FGMRES solver. Numerical experiments verify the conservative properties, the convergence rate of the discrete solutions and the robustness of the preconditioner.


翻译:演示了三维稳定磁流动力动动动方程式的一个新的保守的有限元素求解器。 解答器将磁矢量潜能值和当前密度作为溶解变量,分别由H(cur)相容边缘元素和H(div)相容面元素分离。结果,离异当前密度和磁感应的无差异限制得到了满足。此外,解决方案还保留了总磁热度。生成的线性代数方程式是一个典型的双峰点问题,其条件不完善且不固定。为了有效解决这一问题,我们开发了一个基于制约前提框架的区块前置装置,并设计了一个具有先决条件的硬化器。 数字实验核查了保守性、离散溶剂的趋同率和前置器的坚固性。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
88+阅读 · 2021年11月26日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
86+阅读 · 2020年12月5日
写缓冲(change buffer),这次彻底懂了!!!
架构师之路
5+阅读 · 2019年6月25日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关资讯
写缓冲(change buffer),这次彻底懂了!!!
架构师之路
5+阅读 · 2019年6月25日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机类 | APNOMS 2019等国际会议信息6条
Call4Papers
4+阅读 · 2019年4月15日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员