AMR-to-text is one of the key techniques in the NLP community that aims at generating sentences from the Abstract Meaning Representation (AMR) graphs. Since AMR was proposed in 2013, the study on AMR-to-Text has become increasingly prevalent as an essential branch of structured data to text because of the unique advantages of AMR as a high-level semantic description of natural language. In this paper, we provide a brief survey of AMR-to-Text. Firstly, we introduce the current scenario of this technique and point out its difficulties. Secondly, based on the methods used in previous studies, we roughly divided them into five categories according to their respective mechanisms, i.e., Rules-based, Seq-to-Seq-based, Graph-to-Seq-based, Transformer-based, and Pre-trained Language Model (PLM)-based. In particular, we detail the neural network-based method and present the latest progress of AMR-to-Text, which refers to AMR reconstruction, Decoder optimization, etc. Furthermore, we present the benchmarks and evaluation methods of AMR-to-Text. Eventually, we provide a summary of current techniques and the outlook for future research.
翻译:内容提要是国家语言方案社区的关键技术之一,目的是从“抽象表示”图表中生成句子;自2013年提出《简要表示图示》以来,由于《年度表示》作为高层次自然语言语义描述的《年度表示》的独特优势,作为文字结构数据的基本分支,《年度表示》对文字结构化数据的研究日益普遍,因为《年度表示》作为文字结构化数据的主要分支,《年度表示》作为自然语言高层次语义描述的独特优势。在本文件中,我们对《年度表示》至文字的简要调查。首先,我们介绍目前这种技术的情景,并指出其困难。第二,根据以往研究使用的方法,我们根据各自的机制,即基于规则的、基于Seqeq至Seqeq、基于图表-Seqeq、基于变形语言的、基于预先培训的语言模型,将其大致分为五类,我们介绍了《年度表示-文字说明》的最新进展,其中提及了《年度说明》的重建、脱科德优化等。 此外,我们介绍了《年度展望研究》当前研究技术的基准和评估方法,我们提供了《未来展望-未来研究的概要。