Most research on preconditioners for time-dependent PDEs has focused on implicit multi-step or diagonally-implicit multi-stage temporal discretizations. In this paper, we consider monolithic multigrid preconditioners for fully-implicit multi-stage Runge-Kutta (RK) time integration methods. These temporal discretizations have very attractive accuracy and stability properties, but they couple the spatial degrees of freedom across multiple time levels, requiring the solution of very large linear systems. We extend the classical Vanka relaxation scheme to implicit RK discretizations of saddle point problems. We present numerical results for the incompressible Stokes, Navier-Stokes, and resistive magnetohydrodynamics equations, in two and three dimensions, confirming that these relaxation schemes lead to robust and scalable monolithic multigrid methods for a challenging range of incompressible fluid-flow models.
翻译:多数关于时间依赖性PDE的先决条件的研究都侧重于隐含的多步骤或对等隐含的多阶段时间分解。 在本文中,我们考虑了完全隐含的多阶段龙格-库塔(RK)时间整合方法的单流多格化先决条件。这些时间分解具有非常吸引人和稳定的特性,但是它们将多个时间层次的自由空间度相配,需要大型线性系统的解决办法。我们把古典Vanka放松计划扩大到了支撑点问题的隐含的离散。我们从两个和三个方面展示了不可压缩的斯托克斯、纳维埃-斯托克斯和耐性磁力动力学方程式的数字结果,证实这些放松计划为具有挑战性的、可压缩的流体模型提供了强大和可伸缩的单流多格方法。