Importance sampling (IS) is a Monte Carlo technique for the approximation of intractable distributions and integrals with respect to them. The origin of IS dates from the early 1950s. In the last decades, the rise of the Bayesian paradigm and the increase of the available computational resources have propelled the interest in this theoretically sound methodology. In this paper, we first describe the basic IS algorithm and then revisit the recent advances in this methodology. We pay particular attention to two sophisticated lines. First, we focus on multiple IS (MIS), the case where more than one proposal is available. Second, we describe adaptive IS (AIS), the generic methodology for adapting one or more proposals.
翻译:重要程度抽样(IS)是蒙特卡洛的一项技术,用于接近棘手的分布和组合,其来源是1950年代初期的IS;在过去几十年中,巴伊西亚模式的兴起和现有计算资源的增加激发了人们对这一理论上健全的方法的兴趣;在本文件中,我们首先描述基本的IS算法,然后重新审视这一方法的最新进展;我们特别注意两个尖端的线条;首先,我们侧重于多个IS(MIS),这是一个不止一个建议的例子;第二,我们描述适应性IS(AIS),这是适应性IS(AIS)的通用方法,用于调整一个或多个建议。