In this paper, we focus on studying robustness evaluation of Chinese question matching. Most of the previous work on analyzing robustness issue focus on just one or a few types of artificial adversarial examples. Instead, we argue that it is necessary to formulate a comprehensive evaluation about the linguistic capabilities of models on natural texts. For this purpose, we create a Chinese dataset namely DuQM which contains natural questions with linguistic perturbations to evaluate the robustness of question matching models. DuQM contains 3 categories and 13 subcategories with 32 linguistic perturbations. The extensive experiments demonstrate that DuQM has a better ability to distinguish different models. Importantly, the detailed breakdown of evaluation by linguistic phenomenon in DuQM helps us easily diagnose the strength and weakness of different models. Additionally, our experiment results show that the effect of artificial adversarial examples does not work on the natural texts.


翻译:在本文中,我们的重点是研究中国问题匹配的稳健性评估。以前关于稳健性分析问题的大部分工作只集中在一种或几种人工对抗性实例上。相反,我们认为,有必要对自然文本模型的语言能力进行全面评估。为此,我们创建了中国数据集,即DuQM, 其中包含有语言扰动的自然问题,以评价问题匹配模型的稳健性。DuQM包含3个类别和13个子类别,有32种语言扰动。广泛的实验表明DuQM更有能力区分不同的模型。重要的是,DuQM中语言现象的详细分析有助于我们轻易地诊断不同模型的强弱。此外,我们的实验结果显示,人为对抗性实例的效果在自然文本上是行不通的。

0
下载
关闭预览

相关内容

【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
5+阅读 · 2019年4月21日
Arxiv
6+阅读 · 2018年6月18日
VIP会员
相关VIP内容
【PAISS 2021 教程】概率散度与生成式模型,92页ppt
专知会员服务
34+阅读 · 2021年11月30日
专知会员服务
45+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员