Uncertainty often plays an important role in dynamic flow problems. In this paper, we consider both, a stationary and a dynamic flow model with uncertain boundary data on networks. We introduce two different ways how to compute the probability for random boundary data to be feasible, discussing their advantages and disadvantages. In this context, feasible means, that the flow corresponding to the random boundary data meets some box constraints at the network junctions. The first method is the spheric radial decomposition and the second method is a kernel density estimation. In both settings, we consider certain optimization problems and we compute derivatives of the probabilistic constraint using the kernel density estimator. Moreover, we derive necessary optimality conditions for the stationary and the dynamic case. Throughout the paper, we use numerical examples to illustrate our results by comparing them with a classical Monte Carlo approach to compute the desired probability.
翻译:不确定性往往在动态流动问题中扮演重要角色。 在本文中, 我们既考虑固定和动态流动模式, 同时也考虑网络上的不确定边界数据。 我们提出两种不同的方法来计算随机边界数据的概率是否可行, 讨论其利弊。 在这方面, 可行的手段是随机边界数据流符合网络交叉点的一些方框限制。 第一个方法是球形的辐射分解, 第二个方法是内核密度估计。 在两种情况下, 我们考虑某些优化问题, 并用内核密度估计器来计算概率限制的衍生物。 此外, 我们为静止和动态案例创造必要的最佳条件。 在本文中, 我们用数字示例来说明我们的结果, 用经典的蒙特卡洛方法来比较这些结果, 来计算理想的概率 。