We present a polynomial time exact quantum algorithm for the hidden subgroup problem in $Z_{m^k}^n$. The algorithm uses the quantum Fourier transform modulo m and does not require factorization of m. For smooth m, i.e., when the prime factors of m are of size poly(log m), the quantum Fourier transform can be exactly computed using the method discovered independently by Cleve and Coppersmith, while for general m, the algorithm of Mosca and Zalka is available. Even for m=3 and k=1 our result appears to be new. We also present applications to compute the structure of abelian and solvable groups whose order has the same (but possibly unknown) prime factors as m. The applications for solvable groups also rely on an exact version of a technique proposed by Watrous for computing the uniform superposition of elements of subgroups.
翻译:我们用$ ⁇ m ⁇ k ⁇ n$为隐藏分组问题提出了一个多元时间精确量子算法。 算法使用量子 Fourier变异模穆杜洛 m, 不需要 m 的乘数。 对于光滑 m, 也就是说, 当 m 的质因数是大小的多元( logm) 时, 量子 Fourier 变异可以使用由Cleve和Coopsmith独立发现的方法来精确计算, 而对于一般m, Mosca 和 Zalka 的算法是可用的。 即便对于 m=3 和 k=1, 我们的结果看来是新的。 我们还提出了用于计算一个直线和可溶性组的结构, 这些直线和可溶性组的质因数与 m 相同( 但可能未知) 。 对可溶性组的应用也依赖于Watorthus 提出的计算子元素统一叠加法的精确版本。