Constant Function Market Makers (CFMMs) are a crucial tool for creating exchange markets, have been deployed effectively in the context of prediction markets, and are now especially prominent within the modern Decentralized Finance ecosystem. We show that for any set of beliefs about future asset prices, there exists an optimal CFMM trading function that maximizes the fraction of trades that a CFMM can settle. This trading function is the optimal solution of a convex program. This program therefore gives a tractable framework for market-makers to compile their belief-distribution on the future prices of the underlying assets into the trading function of a maximally capital-efficient CFMM. Our optimization framework further extends to capture the tradeoffs between fee revenue, arbitrage loss, and opportunity costs of liquidity providers. Analyzing the program shows how consideration of profit and loss qualitatively distort the optimal liquidity allocation. Our model additionally explains the diversity of CFMM designs that appear in practice. We show that careful analysis of our convex program enables inference of a market-maker's beliefs about future asset prices, and show that these beliefs mirror the folklore intuition for several widely used CFMMs. Developing the program requires a new notion of the liquidity of a CFMM at any price point, and the core technical challenge is in the analysis of the KKT conditions of an optimization over an infinite-dimensional Banach space.
翻译:常态市场元件(CFMMs)是创造外汇市场的关键工具,在预测市场中得到有效部署,现在在现代分散金融生态系统中特别突出。我们显示,对于任何一套关于未来资产价格的信念,CFMMM交易功能是最佳的,可以最大限度地增加CFMM公司能够解决的交易的一小部分。这一贸易功能是软体程序的最佳解决方案。因此,这个程序为市场决策者提供了一个可移动的框架,以将其对基本资产未来价格的信念分配编集成资本效率最高CFMM的交易功能。我们优化框架进一步扩展,以抓住收费收入、套利损失和流动性提供者的机会成本之间的权衡。对方案的分析显示了对利润和损失的考虑如何从质量上扭曲了最佳流动性分配。我们的模式进一步解释了CFMMMM公司在实践中所呈现的多样化设计。我们展示了对龙型方案的仔细分析,可以推断出市场决策者对未来资产价格的信念,并表明这些信念反映了广泛使用的CFMMM公司的直觉,即CFMM公司在货币价格方面的一项技术优化分析要求对CFMMM公司进行新的分析。