Developing robust sparse models fit for safety-critical and resource-constrained systems such as drones, autonomous robots, etc., has been an issue of longstanding interest. The inability of adversarial training mechanisms to provide a formal robustness guarantee kindles the requirement for verified local robustness mechanisms. This work aims to compute sparse verified locally robust networks which exhibit (benign) accuracy and verified local robustness comparable to their dense counterparts. Towards this objective, we examine several model sparsification approaches and present `SparseVLR'-- a framework to search verified locally robust sparse networks. We empirically investigated SparseVLR's efficacy and generalizability by evaluating various benchmark and application-specific datasets across several models. Above all, we provide an in-depth study and reasoning to unveil the causes for the ascendancy of SparseVLR.
翻译:开发适合无人驾驶飞机、自主机器人等安全关键和资源受限制系统的稳健的稀有模型是一个长期关注的问题。对抗性培训机制无法提供正式的稳健性保障可以证明对经核实的当地稳健性机制的要求。这项工作的目的是计算经核实的零散当地稳健性网络,这些网络的准确性与当地对等网络的密度相当。为了实现这一目标,我们检查了几种模式的封闭性方法,并提出了“SparseVLR”——一个搜索经核实的本地稳健稀少网络的框架。我们通过评估各种基准和不同模型的具体应用数据集,对SparseVLR的功效和可概括性进行了经验性调查。最重要的是,我们提供了深入研究和推理,以揭示Sprass VLR升迁入的原因。