First-order logic (FO) can express many algorithmic problems on graphs, such as the independent set and dominating set problem, parameterized by solution size. On the other hand, FO cannot express the very simple algorithmic question of whether two vertices are connected. We enrich FO with connectivity predicates that are tailored to express algorithmic graph properties that are commonly studied in parameterized algorithmics. By adding the atomic predicates $conn_k (x, y, z_1 ,\ldots, z_k)$ that hold true in a graph if there exists a path between (the valuations of) $x$ and $y$ after (the valuations of) $z_1,\ldots,z_k$ have been deleted, we obtain separator logic $FO + conn$. We show that separator logic can express many interesting problems such as the feedback vertex set problem and elimination distance problems to first-order definable classes. We then study the limitations of separator logic and prove that it cannot express planarity, and, in particular, not the disjoint paths problem. We obtain the stronger disjoint-paths logic $FO + DP$ by adding the atomic predicates $disjoint-paths_k [(x_1, y_1 ),\ldots , (x_k , y_k )]$ that evaluate to true if there are internally vertex disjoint paths between (the valuations of) $x_i$ and $y_i$ for all $1 \le i \le k$. Disjoint-paths logic can express the disjoint paths problem, the problem of (topological) minor containment, the problem of hitting (topological) minors, and many more. Finally, we compare the expressive power of the new logics with that of transitive closure logics and monadic second-order logic.


翻译:第一顺序逻辑( FO) 可以表达图表上的许多算法问题, 比如独立设置和主导设置问题, 以解决方案大小为参数 。 另一方面, FO 无法表达两个脊椎是否连接的非常简单的算法问题 。 我们用连接性上游使FO 丰富, 以参数化算法通常研究的算法属性。 通过添加原子上游 $con_k (x, y, z_ 1,\ldots, z_k) $, 以图中保留真实路径。 如果在( 美元和美元估值) 之后有一条路径( ) 美元和 美元之间的路径, 美元和 美元 美元( k) 的路径, z_k 美元( 美元, 美元), 我们得到更强烈的线性逻辑, 美元- 和 美元( 美元) 电流流 。 我们用更强的 数字- 和 美元( 美元) 电流流, 我们用更强的电流 解的, 和 美元- 美元- 电流化的 解算 。

0
下载
关闭预览

相关内容

机器学习的可解释性
专知会员服务
175+阅读 · 2020年8月27日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月12日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
Logic Rules Powered Knowledge Graph Embedding
Arxiv
7+阅读 · 2019年3月9日
VIP会员
相关VIP内容
机器学习的可解释性
专知会员服务
175+阅读 · 2020年8月27日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【UMD开放书】机器学习课程书册,19章227页pdf,带你学习ML
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员